If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-2y-7=0
a = 3; b = -2; c = -7;
Δ = b2-4ac
Δ = -22-4·3·(-7)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{22}}{2*3}=\frac{2-2\sqrt{22}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{22}}{2*3}=\frac{2+2\sqrt{22}}{6} $
| 2,65=2x-5,15 | | -5x+5=-25 | | 1/16-1/2r+r^2=0 | | 9d+6=3(d+12) | | 6(3p+3)=126 | | -8c+-16=8 | | 24=-4x+7x-3 | | 6r(3+r)=3r•6r | | r=51+(8-1)2 | | 20j-20j+4j=16 | | 6s^2-3s-9=0 | | (12x4)=-9 | | 72=6(-2r+2) | | 9x+4-2x=16 | | 3x-4=2x=7 | | |2u+6|=0 | | 7x-7x+3x=9 | | Y=3,x= | | 11h-9h+h-h+h=6 | | 7q^2-5q-1=0 | | -4u-4=2-4u-6 | | 19a+4a-15a+a=9 | | x1239319+12931932=12931331123132x+13841 | | 108=-3v-5(6+4v) | | t=43-4 | | Y=2,x= | | 3x+3=2*(4+x)+6 | | 12x-9X=4 | | 5j^2+29j-6=0 | | -2x+3-x+4x=9 | | b+3b=20 | | Y=4,x= |